Friday 12 October 2012

Air Traffic Control



 Air traffic control (ATC) is a service provided by ground-based controllers who direct aircraft on the ground and through controlled airspace. The primary purpose of ATC systems worldwide is to separate aircraft to prevent collisions, to organize and expedite the flow of traffic, and to provide information and other support for pilots when able.[1] In some countries, ATC may also play a security or defense role, or be run entirely by the military.

Preventing collisions is referred to as separation, which is a term used to prevent aircraft from coming too close to each other by use of lateral, vertical and longitudinal separation minima. Many aircraft now have collision avoidance systems installed to act as a backup to ATC observation and instructions. In addition to its primary function, the ATC can provide additional services such as providing information to pilots, weather and navigation information and NOTAMs (Notices To AirMen).

In many countries, ATC services are provided throughout the majority of airspace, and its services are available to all users (private, military, and commercial). When controllers are responsible for separating some or all aircraft, such airspace is called "controlled airspace" in contrast to "uncontrolled airspace" where aircraft may fly without the use of the air traffic control system. Depending on the type of flight and the class of airspace, ATC may issue instructions that pilots are required to follow, or merely flight information (in some countries known as advisories) to assist pilots operating in the airspace. In all cases, however, the pilot in command has final responsibility for the safety of the flight, and may deviate from ATC instructions in an emergency.

ATC IS DIVIDED IN TO 4 FACILITIES:

Airport Control


The primary method of controlling the immediate airport environment is visual observation from the aerodrome control tower (TWR). The TWR is a tall, windowed structure located on the airport grounds. Aerodrome or Tower controllers are responsible for the separation and efficient movement of aircraft and vehicles operating on the taxiways and runways of the airport itself, and aircraft in the air near the airport, generally 5 to 10 nautical miles (9 to 18 km) depending on the airport procedures.
Radar displays are also available to controllers at some airports. Controllers may use a radar system called Secondary Surveillance Radar for airborne traffic approaching and departing. These displays include a map of the area, the position of various aircraft, and data tags that include aircraft identification, speed, altitude, and other information described in local procedures. In adverse weather conditions the tower controllers may also use Surface Movement Radar (SMR), Surface Movement Guidance and Control Systems (SMGCS) or Advanced SMGCS to control traffic on the manoeuvring area (taxiways and runways).
The areas of responsibility for TWR controllers fall into three general operational disciplines; Local Control or Air Control, Ground Control, and Flight Data/Clearance Delivery—other categories, such as Apron Control or Ground Movement Planner, may exist at extremely busy airports. While each TWR may have unique airport-specific procedures, such as multiple teams of controllers ('crews') at major or complex airports with multiple runways, the following provides a general concept of the delegation of responsibilities within the TWR environment.
Remote and Virtual Tower (RVT) is a system based on Air Traffic Controllers being located somewhere other than at the local airport tower and still able to provide Air Traffic Control services. Displays for the Air Traffic Controllers may be either optical live video and/or synthetic images based on surveillance sensor data.

Ground control


Ground Control (sometimes known as Ground Movement Control abbreviated to GMC or Surface Movement Control abbreviated to SMC) is responsible for the airport "movement" areas, as well as areas not released to the airlines or other users. This generally includes all taxiways, inactive runways, holding areas, and some transitional aprons or intersections where aircraft arrive, having vacated the runway or departure gate. Exact areas and control responsibilities are clearly defined in local documents and agreements at each airport. Any aircraft, vehicle, or person walking or working in these areas is required to have clearance from Ground Control. This is normally done via VHF/UHF radio, but there may be special cases where other processes are used. Most aircraft and air-side vehicles have radios. Aircraft or vehicles without radios must respond to ATC instructions via aviation light signals or else be led by vehicles with radios. People working on the airport surface normally have a communications link through which they can communicate with Ground Control, commonly either by handheld radio or even cell phone. Ground Control is vital to the smooth operation of the airport, because this position impacts the sequencing of departure aircraft, affecting the safety and efficiency of the airport's operation.
Some busier airports have Surface Movement Radar (SMR), such as, ASDE-3, AMASS or ASDE-X, designed to display aircraft and vehicles on the ground. These are used by Ground Control as an additional tool to control ground traffic, particularly at night or in poor visibility. There are a wide range of capabilities on these systems as they are being modernized. Older systems will display a map of the airport and the target. Newer systems include the capability to display higher quality mapping, radar target, data blocks, and safety alerts, and to interface with other systems such as digital flight strips.





Local Control or Air Control


Local Control (known to pilots as "Tower" or "Tower Control") is responsible for the active runway surfaces. Local Control clears aircraft for takeoff or landing, ensuring that prescribed runway separation will exist at all times. If Local Control detects any unsafe condition, a landing aircraft may be told to "go-around" and be re-sequenced into the landing pattern by the approach or terminal area controller.
Within the TWR, a highly disciplined communications process between Local Control and Ground Control is an absolute necessity. Ground Control must request and gain approval from Local Control to cross any active runway with any aircraft or vehicle. Likewise, Local Control must ensure that Ground Control is aware of any operations that will impact the taxiways, and work with the approach radar controllers to create "holes" or "gaps" in the arrival traffic to allow taxiing traffic to cross runways and to allow departing aircraft to take off. Crew Resource Management (CRM) procedures are often used to ensure this communication process is efficient and clear, although this is not as prevalent as CRM for pilots.



Approach and Terminal Control


Many airports have a radar control facility that is associated with the airport. In most countries, this is referred to as Terminal Control; in the U.S., it is referred to as a TRACON (Terminal Radar Approach Control.) While every airport varies, terminal controllers usually handle traffic in a 30-to-50-nautical-mile (56 to 93 km) radius from the airport. Where there are many busy airports close together, one consolidated Terminal Control Center may service all the airports. The airspace boundaries and altitudes assigned to a Terminal Control Center, which vary widely from airport to airport, are based on factors such as traffic flows, neighboring airports and terrain. A large and complex example is the London Terminal Control Centre which controls traffic for five main London airports up to 20,000 feet (6,100 m) and out to 100 nautical miles (190 km).
Terminal controllers are responsible for providing all ATC services within their airspace. Traffic flow is broadly divided into departures, arrivals, and overflights. As aircraft move in and out of the terminal airspace, they are handed off to the next appropriate control facility (a control tower, an en-route control facility, or a bordering terminal or approach control). Terminal control is responsible for ensuring that aircraft are at an appropriate altitude when they are handed off, and that aircraft arrive at a suitable rate for landing.
Not all airports have a radar approach or terminal control available. In this case, the en-route center or a neighboring terminal or approach control may co-ordinate directly with the tower on the airport and vector inbound aircraft to a position from where they can land visually. At some of these airports, the tower may provide a non-radar procedural approach service to arriving aircraft handed over from a radar unit before they are visual to land. Some units also have a dedicated approach unit which can provide the procedural approach service either all the time or for any periods of radar outage for any reason.














air traffic control game
air traffic control game online
air traffic control jobs
live air traffic control
air traffic control salary
air traffic control course
air traffic control career
air traffic control simulator
















Maani Sharma [ MBA Aviation ]
Manager Aviation NEWS Project

www.All-Aviation-NEWS.in

www.AeroSoftCorp.com

www.AeroSoft.in

www.AeroSoft.co.in

www.AeroSoftseo.com

On-Line Assistance:

Gtok:                       maani.aerosoft@gmail.com

Y!Messenger:          maani.aerosoft@yahoo.com

Rediff:                     maani.aerosoft@rediffmail.com

MSN:                     maani.aerosoft@hotmail.com















1 comment:

  1. Traffic control course A very awesome blog post. We are really grateful for your blog post. You will find a lot of approaches after visiting your post.

    ReplyDelete